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Abstract— Image restoration is an important issue in medical 

imaging. Images are often degraded during the image 

acquisition process. The degradation may involve blurring, 

information loss due to sampling, quantization effects, and 

various sources of noise. The purpose of image restoration is to 

estimate the original image from the degraded image that 

minimizes the MSE (Mean Square Error) between them. It is 

widely used in various fields of applications, such as medical 

imaging, astronomical imaging, remote sensing, microscopy 

imaging, photography deblurring, and forensic science, etc. We 

have in vivo prostate tissue of rat after the staining, a technique 

used in microscopy to enhance contrast in the microscopic 

image. We have the image of in vivo prostate tissue of rat by 

administration of specific medicine as the experimental image. 

In this paper we are giving the comparative results on the 

prostate tissue after different image restoration techniques like 

Wiener filter and Geometric mean filter, on the basis of MSE 

(Mean Square Error), SNR (Signal to Noise Ratio) and PSNR 

(Peak SNR). After analysis, in term of the MSE, SNR and 

PSNR, we have the comparative results on the prostate tissue 

after different image restoration techniques. 

Keywords- Rat Prostate Tissue, in vivo, Staining, Image 

Restoration, Fourier Spectrum, Point Spread function (PSF), Mean 

Square Error (MSE), SNR (Signal to Noise Ratio), PSNR (Peak 

SNR), Motion Blur. 

I.  INTRODUCTION 

Images are produced to record or display useful 

information. Due to imperfections in the imaging and 

capturing process, however, the recorded image invariably 

represents a degraded version of the original scene [15]. 

Blurring
 
[5, 6, 7, 8] is a form of bandwidth reduction of an 

ideal image owing to the imperfect image formation 

process. It can be caused by relative motion between the 

camera and the original scene, or by an optical system that 

is out of focus, when aerial photographs are produced for 

remote sensing purposes, blurs are introduced by 

atmospheric turbulence, aberrations in the optical system, 

and relative motion between the camera and the ground. 

Such blurring is not confined to optical images, for example 

electron micrographs are corrupted by spherical aberrations 

of the electron lenses, and CT scans suffer from X-ray 

scatter. In this paper we have used Fourier spectrum 

method, as a blur identification method which is used to 

identify the blurs that are presents in the degraded image, 

which is very useful in the image restoration process. The 

field of image restoration [9, 10, 11, 12, 13, 14] (sometimes 

referred to as image deblurring or image deconvolution) is 

concerned with the reconstruction or estimation of the 

uncorrupted image from a blurred and noisy one. 

Essentially, it tries to perform an operation on the image that 

is the inverse of the imperfections in the image formation 

system.  
This paper attempts to analyze the brightness of a rat 

prostate image in Fourier transformed space. The paper is 
organized as follows: Section 2 and 3 describes Image 
formation model and Linear Motion Blur, Section 4 and 5 
explains the proposed approach of Image Restoration 
Algorithm and Quantitative Approach. Further Sections 6 
and 7 describe the, experimental results and conclusion 
respectively. 

  

II. IMAGE FORMATION MODEL 

We assume that the blurring function acts as a 
convolution kernel or point-spread function d(n1,n2) that does 
not vary spatially. It means that the statistical properties 
(mean and correlation function) of the image and noise do 
not change spatially.  These modeling assumptions can be 
mathematically formulated as follows. The ideal image 
f(n1,n2) that does not contain any blur or noise, then the 
recorded image g(n1,n2) is modeled as shown in  Figure 1a. 
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Where w(n1,n2) is the additive noise that corrupts the ideal 
image. 
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(a) 

 
(b) 

 
Fig 1. (a) Image formation model in the spatial domain, 
          (b) Image formation model in the Fourier domain 

The blurring of images is modeled in Fig. 1 as the 
convolution of an ideal image with a 2-D Point Spread 
Function (PSF) d(n1,n2). The interpretation of (1) is that, if 
the ideal image f(n1,n2) consists of a single intensity point or 
point source, this point would be recorded as a spread-out 
intensity pattern d(n1,n2), hence the name point spread 
function. Equation (1) can be rewritten in the frequency 
domain [1]-[4] as, 

          ),(),(),(),( vuWvuDvuFvuG                 (2) 

where D(u,v) is the Fourier transform of the PSF (called 
the optical Transfer function or OTF). 

 

III. LINEAR MOTION BLUR 

    It occurs due to the relative motion between the camera 

and the scene, i.e. the object moved during the time that the 

shutter was open, with the result that the object appears to 

be smeared in the recorded image. Obviously we obtain 

precisely the same effect if the camera moved while the 

shutter was open. When the scene to be recorded, translates 

relative to the camera at a constant velocity vrelative under an 

angle of Φ radians with the horizontal axis during the 

exposure interval [0, t exposure], the distortion is one-

dimensional. Defining the “length of motion” by  L= vrelative 

. t exposure , then the PSF is given by: 
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The discrete version of (3) is not easily captured in a closed 

form expression in general. For the special case that Φ=0, an 

appropriate approximation is: 
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IV. IMAGE RESTORATION ALGORITHM 

A.  Inverse Filter 

From equation (1), if noise is not present in the observed 

image then the recorded image can be modeled as  

              1 2 1 2 1 2( , ) ( , ) ( , ) g n n d n n f n n                           (3) 

Its Fourier transform gives,  

               

                  𝐺 𝑢, 𝑣 = 𝐷 𝑢, 𝑣 𝐹 𝑢, 𝑣  

                                                                                            (4) 

                  𝐹  𝑢, 𝑣 =
𝐺(𝑢,𝑣)

𝐷(𝑢,𝑣)
                                 

i. e., by modeling the degenerating effect (d) and dividing 

the FT of the image by the FT of the model, then we can get 

the FT of the restored image.  If noise is present in the 

observed image then we get  

       1 2 1 2 1 2 1 2( , ) ( , ) ( , ) ( , )  g n n d n n f n n w n n              (5) 

Its Fourier transform gives,  
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B. Wiener Filter  

  To overcome the noise sensitivity of the inverse filter, a 

number of restoration filters have been developed that are 

collectively called least-squares filters
 [16, 17]

. We describe 

the two most commonly used filters from this collection, 

namely the Wiener filter and the constrained least-squares 

filter. The Wiener filter is a linear spatially invariant filter to 

choose an estimate 𝑓 of the uncorrupted image 𝑓 such that it 

minimizes the mean-squared error (MSE) between the ideal 

and the restored image. 
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The solution of this minimization problem is known as the 

Wiener filter.  It removes the additive noise and inverts the 

blurring simultaneously so as to emphasize any lines which 

are hidden in the image. This filter operates in the Fourier 

domain, making the elimination of noise easier as the high 

and low frequencies are removed from the noise to leave a 

sharp image. Using Fourier transforms means the noise is 

easier to completely eliminate and the actual line imbedded 

in noise easier to isolate making it a slightly more effective 
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method of filtering. The Wiener filter in Fourier domain can 

be expressed as follows:   
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       Where D(u, v) = degradation function. 

                 D
*
(u, v) = complex conjugate of D(u, v).  

 
2 *D(u,v) D (u,v).D(u,v)  

2
S (u, v) W(u, v)  = power spectrum of the noise and 

2

fS (u,v) F(u,v) = power spectrum of ideal (original) 

image.  

When noise is zero, Wiener Filter = inverse Filter. 

Since 
2

S (u, v) W(u, v)  and 
2

fS (u,v) F(u,v)  are 

seldom known, the Wiener Filter is frequently approximated 

by 
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Where K is specified as a constant. 

 

4.3 Geometric Mean Filter 

   Geometric mean filter is the generalization of the wiener 

fiter.The Geometric mean filter in Fourier domain can be 

expressed as follows:   
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   Where α and β are positive and real constant. 

When α = 1 this filter reduces to the inverse filter, with α = 

0 the filter becomes parametric wiener filter, which reduces 

to the standard wiener filter when β =1. If α =1/2, the filter 

becomes a product of the two quantities raised to the same 

power, which is the definition of Geometric mean filter. 

When α < 1/2 and β = 1 then the filter performance will tend 

toward inverse Filter similarly, when α > 1/2 and β =1, the 

filter performance tend toward Wiener Filter. When α =1/2 

and β =1 then the filter is referred to as the spectrum 

equalization Filter. 

V. QUANTITATIVE APPROACH 

A.  Mean Square Error (MSE) 

The mean square error (MSE) between the original image 

𝑓(𝑥, 𝑦) and filtered image 𝑓 (𝑥, 𝑦) of size M X N, can be 

calculated as- 

    𝑀𝑆𝐸 =
1

𝑀𝑁
   𝑓  𝑥, 𝑦 − 𝑓(𝑥, 𝑦) 𝑁−1

𝑗=0
2𝑀−1

𝑖=0         (11) 

 

B.  Signal to Noise Ratio (SNR) 

In image restoration, the improvement in quality of the 

restored image over the recorded blurred one is measured by 

the signal-to-noise-ratio improvement. The signal-to-noise-

ratio 
[7]

 of the recorded (blurred and noisy) image is defined 

as follows in decibels:  
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The signal-to-noise-ratio of the restored image is similarly 

 defined as:  
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Where σ
2
 is the variance of the desired image and σ

2
e is the 

variance of the difference image.  

   

C.  Peak Signal to Noise Ratio (PSNR) 

    The metric Peak Signal to Noise Ratio (PSNR) 
[14]

 which 

relates the magnitude of the noise to the peak value in the 

image, in decibels, is defined as,  

 

    𝑃𝑆𝑁𝑅 = 10 𝑙𝑜𝑔10  
𝑃2

𝑀𝑆𝐸
 𝑑𝐵             (13) 

 

Where p is the peak intensity value of a signal (i.e. 255 is 

the peak value in an 8-bit image).   

 

VI. EXPERIMENTAL RESULTS 

    In table-1(A), we have shown the image analysis of 

prostate tissue in case of motion blur of length 7 pixels and 

angle 30
0
. The original image of prostate tissue is given in 

figure 2(a). The power spectrum of figure 2(a) is given in 

figure 2(b) and its histogram plot is given in figure 2(c). 

Using MATLAB software, we are generated a degraded 

image after introducing a motion blur in length 7 pixels and 

angle 30
0
 which are shown in figure 2(d)  and its power 

spectrum (of figure 2(d)) is given in figure 2(e). The 

restored image are shown in figure 2((f), (g) & (h))) after 
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applying the various restoration algorithm such as Wiener 

Filter and Geometric mean filter on the degraded image of 

figure 2 (d). These restoration filters have better restored 

image and its comparative performance using quantitative 

approach (MSE, SNR & PSNR) are given in table -1 (B). 

From table -1(B), we see that the degraded image have MSE 

- 0.011900, SNR-14.779509 and PSNR-19.2445 after 

applying the Wiener filter we get the MSE - 0.006473, 

SNR-20.167760 and PSNR -21.8889 and after applying the 

Geometric mean filter we get the MSE - 0.000922, SNR-

35.145876 and PSNR-30.3537, after seeing these data we 

can say that geometric mean filter  have smallest MSE and 

highest SNR and PSNR value, this means it has better 

restored image in comparison of other  restoration 

algorithm.
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TABLE-1 (B) 

MEASURE PERFORMANCE OF RESTORATION ALGORITHM USING QUANTITATIVE APPROACH IN CASE OF MOTION BLUR OF LENGTH 7 PIXELS AND ANGLE 300 

 
TABLE -1 (A) 

IMAGE ANALYSIS IN CASE OF MOTION BLURS OF LENGTH 7 PIXELS AND ANGLE 300 

 
Fig2(a). Image of Prostate Tissue of Rat 

 
(b). Power spectrum of Fig.2(a) (c). Histogram plot of Fig.2 (a) 

 

 
(d).  Degraded Image (with random noise 

&  motion Blur) of fig.2(a) 

 
(e).  Power spectrum of fig.2(d) 

 
(f). Restored Image (with parametric  

wiener  Filter) of fig.2(d) 

                       

                                    
                                   (g).  Restored Image (with constant 

                                           wiener Filter) of fig.2(d) 

 

 
(h).  Restored Image (with Geometric  Mean  

        Filter) of fig.2(d) 

Filter 
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VII. CONCLUSIONS 

     The geometric mean filter gives the better result in 

comparison of other restoration filtering techniques. The 

geometric mean filter have smallest MSE-0.000922 and 

highest SNR-35.1459dB and PSNR-30.3537dB in case of 

motion blur in comparison of MSE, SNR and PSNR values 

of other restoration filter.  
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Before Filter (Degraded 

Image) 
0.011900 14.779509 19.2445 

Wiener Filter 

        *parametric 
0.006473 20.167760 21.8889 

Wiener Filter 

      *constant 
0.008201 17.680091 20.8614 

Geometric Mean Filter 0.000922 35.145876 30.3537 


