Intl J Engg Sci Adv Research 2016 March; 2(1):70-72

ISSN NO: 2395-0730

Evaluating and Recognizing Mechanism of Android
Malware through Dismantling and Visualization

Sanjay Sharma
Research Scholar
Computer Science & EngineeringNational
Institute for TechnicalTeacher Training &
Research , Chandigarh
sanjay.cse@nitttrchd.ac.in

Abstract-1t is essential requirement to enroot
evaluation and recognizing quick fix in current scenario of
advancement. Certainly many of the safeguards are
contributing in narrow consideration of mobile malwares
and its cultivated evaluation. As Android is a prominent
medium to put forth the process of evaluation technique of
Malwares resembling to its actual malware families, our
target is to do an observable comparison among prevailing
android malwares and making a significant decision on their
intensity of alikeness in this paper which overall contributes
in dissemination of it to its investigator relevantly.

Keywords— Android malware, malware
Smartphonesecurity.

analysis,

. INTRODUCTION

By rapid growth of the speed of wired and wireless networks and
sharp increase of smartphone adoption, the number of financial
transactions with the smartphone has increased in recent years.
Unfortunately, this comes with evolution of mobile malware,
especially financial fraud that utilizes the wvulnerability of
smartphone and installs malwares on your smartphone. They
then flow out personal information to use the premium SMS
services and micro-payments on mobile phones. For the
advantages that can be obtained from the smartphone infected
with malware, the number of mobile malicious code is rapidly
increasing. Specially, many mobile malwares are found that are
repackaged the legitimate applications with malicious codes[1].
In this paper, we propose a method of analyzing and deciding
malware on the basis of similarity with existing malware
families on the popular platform, Android. In particular, we
express in visualization the suspected Android application and
compare with malware families. According to the degree of
similarity, it helps them distribute to inspector discriminately.

Il. RELATED WORKS

Anubhav Bewerwal
Research Scholar
Software EngineeringRajiv Gandhi
Proudyogiki Vishvavidyalay, Bhopal
bewerwalanu@gmail.com

Arvind Lal
Research Scholar
Computer Science & Engineering
National Institute for Technical Teacher
Training & Research, Chandigarh
arvind.cse@nitttrchd.ac.in

To solve the mobile malware, similar initiatives have emerged
on the Android platform. Zhou et al. find that about 86.0%
malwares are repackaged version of legitimate application with
malicious codes. Also they characterized of existing Android
malware, ranging from their installation, activation, to the
carried malicious payloads. In this paper, although they
classified as above, we find that malwares are repacked in
diverse ways, that is hackers disassemble existing malwares or
legitimate apps, enclose malicious payloads, and then re-
assemble and submit the new apps or update apps to official
and/or third party Android market[1].

M. Cho et al. proposed AndroScope, a performance analysis
tool for the Android platform and provides a trace mechanism
for tracing not only the Android applications but also all
software layers of the Android platform that is, Dalvik VM, core
libraries, Android libraries, and even Linux kernels[2].
AndroScope provided advanced Traceview[3] which is
graphical viewer to load the trace file and display such basic
information as the enter and exit times of each method.

J. Ko et al. proposed techniques to determine similarity of
Android application via reversing and k-gram birthmarking.
Although they developed the system to identify software reuse
illegally, this system decompiles the Android apps and made the
birthmarks based on k-gram and determines the similarity
between the sample Android apps by comparing the
birthmarks[4].

I1l. PROPOSED APPROACHES

We propose the system which makes Android malware
family and measuring similarity among Android applications.
Especially, we produce CFG(Call Flow Graph) to visualize
characteristics of Android application, select the representative
CFG of each family and then suspected Android application
check degree of similarity. According to the degree of similarity,
malwares are distributed to inspectors discriminately.

Intl J Engg Sci Adv Research 2016 March; 2(1):70-72

Representative
Known Malicious CFGs of Selection of R1 of MF 1
MF1 Method List Known MF 1

— ¥ Representative
Known |::> Malicious EJ CFGs of Selection of R2 > of MF 2
MEF 2 Admission List r/” | Known ME
Malicious
Representative
Kn
i CFGs of Selection of RN of MEM
MFN Known MF N

String List

Suspected

Method List T
Suspected of e
Android Suspected l: p Measuring Similarity

2 o2 5 App among CFGs

App (-apk) Admission List

Suspected

String List

«MF: Malware family

Figure 1 : Procedures of the system

Figure 1 illustrates our approach to visualize of Android
malware, measure similarity with the existing malware
families and then distribute to inspector according to level of
difficulty appropriately. Our system consists of 4 sub-
systems: system of making CFGs of known malware
families, system of selection of Representative of malware
families, system of making CFG of Suspected Android
application, and system of Measuring similarity and
Distribution malware to inspector.

The first step is to make CFGs of all known and collected
malwares. To make them, system disassembles all malwares
and removes identifiers in order to increase the accuracy.
And then, system extracts and lists malicious methods,
needless permissions and malicious strings. CFGs are made
by analyzing call among methods, relevant threads, life-cycle
of Activities. Additionally, the system abstracts the call graph
information not only to decrease the computation but to
increase the accuracy by removing insignificant calls. The
second step is to select a representative in each malware
family. Each representative is selected the ones with the
highest degree of similarity among malware family members.
At this time, methods of calculating of similarity as are
Isomorphism, Edit distance, Maximum common sub-graph,
Statistical similarity, Node and edge matching methods, and

ISSN NO: 2395-

so on [5]. The Next step is to make CFG of suspected
Android application. This is almost the same as making
CFGs of known malware families. However, instead of
malicious methods, permissions and strings, suspected them
is used for making CFG. Finally, the system compares
suspected malware CFG with representatives of malware
family CFGs and produces the degree of difficulty to analyze
a suspected application. Especially, it is important to measure
the degree of difficulty. According to the degree of difficulty,
malwares are distributed to inspectors discriminately. We
propose the rules for measuring difficulty are as follows:

e Inverse proportion to the number of application in

each known malware family.

e Proportion to the appearance frequency within the
limited time of the last in each known malware
family.

e Inverse proportion to the number of application in a
known malware family.

e Proportion to whether to apply the code obfuscation.

e Inverse proportion to the degree of similarity among
the known malware families.

Figure 2 illustrates flow chart of our system to detect whether
malware. First of all, suspected A ndroid application should be
disassembled to know if malware is not. And then, prior to
making the CFG the system checks suspected permission list, for
example SEND_SMS, READ_SMS, WRITE_SMS,
RECEIVE_SMS,READ_PHONE_STATE,KILL_BACKGROU
D_PROCESSES and so on. If the application is suspected, the
system progress to make a CFG. To make the CFG, methods,
relevant threads, activities and suspected strings are extracted.
Also system may remove identifiers in order to increase the
accuracy. After making CFG, it measures similarity with
existing malware family and analysis difficulty. If difficulty is
the highest thing, the malware is placed in the highest expert.
However, the malware is the latest fashion and difficulty is low
relatively, the malware is sent to beginner. After an inspector
finishes analyzing and detecting Android application, it is joined
malware family or passed. If it is malware, the family is updated
and selects a new representative optionally.

Intl J Engg Sci Adv Research 2016 March; 2(1):70-72

0730

Suspected Android
app (APK File) =
META-INF
classes.dex
Permission List of
T malicious code
Permission list of T
Application

] Yes No
DI- Assemble

| search & extract of suspected methods etc I
¥
| CFG creation of Suspected app |

v
Normalization and Abstraction I

ICFGs of Malware
Family
| Measuring Similarity among CFGs |

v

| Difficulty of analysis l

Difficulty 1 S Difficulty N
Y v L2
[Beglnner] [] [Expert]

Detect of Malware

Selection of New
representative

Is a Malware ?

Is not a Malware ?

__TheEnd

Figure2. Flow chart of detecting and updating malware family

IV. CONCLUSION AND FUTURE WORK

This work presents the method of detecting an Android
malware with visualization of application and measuring
similarity among known malware families. Also, we proposed
that malware is distributed to various inspectors discriminately
according to degree of difficulty to analyze. In particular, we
suggested the rules for measuring difficulty. In the future, we
plan to develop this system and apply in real-world.

REFERNCES

[1] Yajin Zhou, Xuxian Jiang, “Dissecting Android Malware :
Characterization and Evolution” Proceeding 33rd IEEE
Symposium Security and Privacy, 2012

[2] AndroScope: An insightful performance analyzer for all
software layers of the android-based systems, ETRI Journal,
2013

[3] Traceview,
“http://developer.android.com/tools/help/traceview.html”

ISSN NO: 2395-

[4] J. Ko, et al. “Measuring Similarity of Android Applications
via Reversing and K-gram Birthmarking”, RACS’13
pp.336-341, Oct, 2013

[5] L. Zager, “Graph similarity amd matching”, MS Thesis,
EECS, MIT, 2005.

